Constructing an LL(1) Parse Table
CSC 2710

Assume a context-free grammar $G = (N, \Sigma, P, S)$.

First Sets
Let x be a string in $(N \cup \Sigma)^*$. $\text{First}(x)$ is the set of terminal symbols or λ that can appear as a prefix of any string derivable from x. $\lambda \in \text{First}(x)$ if $x \Rightarrow^* \lambda$.

Inductive/Recursive Rules:
1. $\text{First}(\lambda) = \{ \lambda \}$
2. $\text{First}(aw) = \text{First}(a) = \{ a \}$ if $a \in \Sigma$.
3. If $A \rightarrow w_1 | w_2 | \ldots | w_n$ are rules in P, then $\text{First}(A) = \text{First}(w_1) \cup \text{First}(w_2) \cup \ldots \cup \text{First}(w_n)$.
4. If $w \neq \lambda$
 a. If $\lambda \not\in \text{First}(A)$, then $\text{First}(Aw) = \text{First}(A)$
 b. If $\lambda \in \text{First}(A)$, then $\text{First}(Aw) = (\text{First}(A) - \{ \lambda \}) \cup \text{First}(w)$

Follow Sets
Let $A \in N$. Let $B \in N$. Let $x, y \in (N \cup \Sigma)^*$. $\text{Follow}(A)$ is the set of terminal symbols that can appear after A in a sentential form. Assume that $\$$ \in \Sigma$ is a special terminal symbol that does not appear in any rule in P. It is an end of string marker.
1. If S is the start symbol, $\$$ \in \text{Follow}(S)$.
2. If $A \rightarrow xB$ is a rule in P, then $\text{Follow}(A) \subseteq \text{Follow}(B)$.
3. If $A \rightarrow xBy$ is a rule in P, then $(\text{First}(y) - \{ \lambda \}) \subseteq \text{Follow}(B)$.
4. If $A \rightarrow xBy$ is a rule in P and $\lambda \in \text{First}(y)$, then $\text{Follow}(A) \subseteq \text{Follow}(B)$.

Now we can use these sets to generate our LL(1) parse table.

LL(1) Parse Table
Our table T has one row for each nonterminal symbol, and one column for each terminal symbol (including $\$$). The entries of the table will either be empty or hold one rule. We need to consider each rule $A \rightarrow w$ in P. A given rule may go into multiple entries of the table.
1. For each terminal $a \in \text{First}(w)$, put $A \rightarrow w$ in $T[A,a]$.
2. If $\lambda \in \text{First}(w)$, then for each terminal $a \in \text{Follow}(A)$, put $A \rightarrow w$ in $T[A,a]$.
3. If $\lambda \in \text{First}(w)$ and $\$$ \in \text{Follow}(A)$, put $A \rightarrow w$ in $T[A,\$$].

If we ever try to put a second rule in an entry of the table, the grammar is not LL(1), and we need to attempt to fix the grammar.

Using the LL(1) Parse Table to Parse
Instead of parsing just w, we parse $w\$$$. We use a stack, and push S, our start symbol to begin.
// assume w$ = w[1..n]
i ← 1
create stack and push S on stack
while ((stack not empty) and (i <= n))
 top ← pop(stack)
 while top is a terminal symbol
 if top does not match w[i]
 break;
 end if
 i++
 if (stack not empty)
 top ← pop(stack)
 end if
 end while
if top is a nonterminal symbol and T[top,w[i]] has a rule
 push reverse of RHS of rule at T[top,w[i]] on stack one symbol at a time
 // if RHS is λ, don’t push anything
 // remember LIFO property of stack
else
 break;
end if
end while
if ((i == n) and (stack empty))
 accept string
else
 reject string
end if